Prédispositions Génétiques aux Infections Graves

Xème Journée de Réanimation de Picardie

Amiens, 4 Avril 2007
Pr. Jean-Paul Mira

Réanimation Médicale; CHU Cochin Port-Royal Paris
Institut Cochin, INSERM U 567, Paris
Completion of the Human Genome Project - April 2003 -

- 12.5 years
- $2.7 billion
- International cooperative effort
 - 6 countries
 - 20 sequencing centers
- Full & immediate data release

Odyssey to the Human Genome Project

1953 Watson & Crick: double helical structure of DNA
1960s Role of RNA and Genetic Code
1970s Recombinant DNA technology
1977 Sanger and Gilbert: DNA sequencing
1983 Mapping of disorders by linkage (Huntington disease)
1986 Polymerase Chain Reaction
1990 Human Genome Project
1995 *Haemophilus influenzae* genome
2003 Human and mice genome sequences
 SNPs Map
Genetic Polymorphisms

SNP

C G G T A C T T G A G G C T A Person 1
C G G T A C T T C G A G G C T A Person 2

→ Human SNP Map
How SNPs Influence Human Biology

SNP

Exon

rSNP (regulatory SNP)
iSNP (intron SNP)
cSNP

amino acid substitution
no amino acid substitution

Possible phenotype change

gSNP
Biodiversity: 0,1% of whole genome
Evidences for a genetic component to sepsis

Animal Studies

- Susceptibility/resistance to certain infection in mice
- Susceptibility/resistance phenotypes of knock-out mice
Intranasal challenge, 10^6 cfu *S. pneumoniae* strain D39
Role of Genetic Resistance in Invasive Pneumococcal Infection: Identification and Study of Susceptibility and Resistance in Inbred Mouse Strains

Intranasal challenge, 10^6 cfu S. pneumoniae strain D39
One phenotype may be due to different genotypes.

Despite the complexity of the immune defense, one missing element may have dramatic clinical consequences.
Evidences for a genetic component to sepsis

Animal Studies
- Susceptibility/resistance to certain infection in mice
- Susceptibility/resistance phenotypes of knockout mice

Human Studies
- Clinical Evidences
- Ethnic Differences
- Twin Studies
- Adoptee Studies
Recurrent Purpura Fulminans

2002/01: 15 yo girl admitted in ICU
- Temperature 40°C; HR 125; BP 74/45; RR 38
- Meningitis with purpura fulminans
- MOF (Shock, ARDS, ARF, DIC, Lactic acidosis)
- Meningococcus type N in the skin biopsy
- Survival with multiple finger amputations and skin grafting
- 6 month hospitalization

2003/02:
- Temperature 39°C; HR 125; BP 83/48; RR: 33
- Meningitis with purpura fulminans
- Lumbar punction → meningococcus type Y
- Shock and DIC
- Survival with new skin grafting
- 3 month hospitalization

Bohé J. Clin Infect Dis 2005
Pneumococcal Bacteremia by Ethnicity and Age

Monroe County, New York, 1985-1989

Bennet NM; Am J Public Health 1992;82:15
Twin Studies

dizygotic
- shared environment
- unique environment
- unique environment
- unique environment
- unique genes
- 0.5 shared genes

monozygotic
- shared environment
- unique environment
- unique environment
- unique genes
- shared genes
Twin Studies

• **Tuberculosis**
 Kallmann FJ, Am rev Tuber 1943.

• **Leprosis**
 Fine PE, Int J leprosy 1981

• **Helicobacter pylori**

• **Malaria**

• **AIDS**
Polymorphisms and Septic Shock
Genetic Polymorphisms and ICU

http://geneticassociationdb.nih.gov

Genetic Association Database

Search

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Records Found: 73

<table>
<thead>
<tr>
<th>Last Update</th>
<th>Checked</th>
<th>CDC Index</th>
<th>OAC - CDC</th>
<th>Year</th>
<th>Assoc YorN</th>
<th>Gene Symbol</th>
<th>OMIM-1</th>
<th>Gene Expert</th>
<th>Broad Phenotype (Disease)</th>
<th>Disease Expert</th>
<th>MeSH Disease Terms</th>
<th>Disease Class</th>
<th>Chr</th>
<th>Ch-Band</th>
<th>DNA Start(bp)</th>
<th>DNA End(bp)</th>
<th>RS Number</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-FEB-07</td>
<td>12934</td>
<td>2</td>
<td>2006</td>
<td>Y</td>
<td>MYLK</td>
<td>600922</td>
<td></td>
<td></td>
<td>sepsis; lung injury, acute</td>
<td>INFECTION 3</td>
<td>2q21</td>
<td>124913635</td>
<td>126865030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>13712</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>SERPINE1</td>
<td>173360</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>INFECTION 7</td>
<td>7q23-3q22</td>
<td>100557172</td>
<td>106598026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>8994</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>CAR1D5</td>
<td>605956</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>INFECTION 10</td>
<td>19p22-2q11</td>
<td>49289551</td>
<td>49324840</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>9288</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>CD14</td>
<td>158120</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>Sepsis (Critical Illness)</td>
<td>INFECTION 5</td>
<td>6q27-8q22</td>
<td>139901565</td>
<td>1399992950</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>22353</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>IL10</td>
<td>124092</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>Sepsis (Critical Illness)</td>
<td>INFECTION 1</td>
<td>1q21-3q22</td>
<td>205007571</td>
<td>205012402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>26709</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>TNF</td>
<td>191160</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>Sepsis (Critical Illness)</td>
<td>INFECTION 6</td>
<td>6p21-3</td>
<td>31651329</td>
<td>31654809</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>26557</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>TLR4</td>
<td>603830</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>Sepsis (Critical Illness)</td>
<td>INFECTION 9</td>
<td>9q34-2q33</td>
<td>119500406</td>
<td>119517873</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>9285</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>CD14</td>
<td>158120</td>
<td></td>
<td></td>
<td>sepsis; pancreatitis, sepsis</td>
<td>Shock, Septic (Pancreatitis/Acute)</td>
<td>INFECTION 5</td>
<td>6q27-8q22</td>
<td>139901565</td>
<td>1399992950</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>22353</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>IL10</td>
<td>124092</td>
<td></td>
<td></td>
<td>sepsis; pancreatitis, sepsis</td>
<td>Shock, Septic (Pancreatitis/Acute)</td>
<td>INFECTION 1</td>
<td>1q21-3q22</td>
<td>205007571</td>
<td>205012402</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-FEB-07</td>
<td>11754</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>IL1A</td>
<td>147702</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>INFECTION 2</td>
<td>2q14</td>
<td>111060320</td>
<td>111060944</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01-DEC-06</td>
<td>22521</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>IL1B</td>
<td>147720</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>INFECTION 2</td>
<td>2q14</td>
<td>113303980</td>
<td>113318052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-FEB-07</td>
<td>24655</td>
<td>2</td>
<td>2005</td>
<td>Y</td>
<td>IL1RN</td>
<td>147679</td>
<td></td>
<td></td>
<td>sepsis</td>
<td>INFECTION 2</td>
<td>2q14.2</td>
<td>113391041</td>
<td>113360003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-FEB-07</td>
<td>14418</td>
<td>2</td>
<td>2004</td>
<td>N</td>
<td>TNF</td>
<td>101100</td>
<td></td>
<td></td>
<td>Sepsis (Shock, Septic (Genetic P))</td>
<td>INFECTION 6</td>
<td>6p21-3</td>
<td>31651329</td>
<td>31654809</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Genetic Polymorphisms and Severe Sepsis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Susceptibility and/or Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannose Binding Lectin</td>
<td>Meningococcemia, Pneumococcemia, Severe sepsis</td>
</tr>
<tr>
<td>Toll-Like Receptor 4/2</td>
<td>Gram negative/positive Septic Shock</td>
</tr>
<tr>
<td>Toll-Like Receptor 5</td>
<td>Legionnaire’s Disease</td>
</tr>
<tr>
<td>CD14; IRAK-1</td>
<td>Septic Shock</td>
</tr>
<tr>
<td>FCγRII Receptor</td>
<td>Meningococcemia; Pneumococcemia</td>
</tr>
<tr>
<td>TNF locus</td>
<td>Meningococcemia; Septic Shock</td>
</tr>
<tr>
<td>IL-18</td>
<td>Severe Sepsis</td>
</tr>
<tr>
<td>IL-10</td>
<td>Severe Sepsis, Meningococcemia</td>
</tr>
<tr>
<td>IL-6</td>
<td>Severe sepsis</td>
</tr>
<tr>
<td>IL-1 locus</td>
<td>Severe Sepsis</td>
</tr>
<tr>
<td>IL-4</td>
<td>Viral Pneumonia</td>
</tr>
<tr>
<td>Caspase 12</td>
<td>Severe Sepsis</td>
</tr>
<tr>
<td>IL-4 locus</td>
<td>Meningococcemia; Septic Shock</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Severe sepsis</td>
</tr>
<tr>
<td>Factor V Leiden</td>
<td>Meningococcemia; Septic Shock</td>
</tr>
<tr>
<td>Protein C; Fibrinogen</td>
<td>Severe Sepsis</td>
</tr>
</tbody>
</table>
BRIEF REPORT

Inherited Deficiency of Mannan-Binding Lectin–Associated Serine Protease 2

• Opsonisation defect
 – C3 deficit
 – *H. influenzae* infections
 – *S. Pneumoniae* infections

• Membrane attack complex deficiency
 – C9, C7, properdin, C3...deficits
 – *N. meningitidis* infections
MBL Polymorphisms & the Risk of Infections

• Repeated bacterial and fungal infections
 Sumiya et al., Lancet 1991
 Summerfeld et al., Lancet 1995
 Garred et al., Lancet 1995
 Summerfeld et al., BMJ 1997

• Infections after chemotherapy
 Neth et al., Lancet 2001
 Peterslund et al., Lancet 2001

• Increased severity of lung disease and low survival in cystic fibrosis

• Meningococcal disease
 Hibberd et al., Lancet 1999

• Increased risk and severity of severe sepsis
 Roy, Lancet 2002
 Garred JID 2003
MBL genotype and risk of invasive pneumococcal disease

Odds ratio 3.48 (1.51 – 8.01); p=0.003
MBL Polymorphisms, SIRS, and Sepsis

272 ICU Pts with SIRS

A: Wild Type
O: Structural polymorphism associated with low MBL levels

Garred P. J Infect Dis 2003;188:1394
Clinical potential of mannose-binding lectin-replacement therapy

J.A. Summerfield¹

Division of Medicine, Faculty of Medicine, Imperial College London, St Mary’s Campus, London W2 1NY, U.K.
IRAK-1 Haplotype Increases NF-κB Activation

IRAK-1 gene located on X chromosome

2 haplotypes: htSNP = IRAK-1 532L→S

Arcoli J. Am J Respir Crit Care Med 2006;175:1335
IRAK-1 Haplotype Increases Morbidity of Sepsis

155 septic Caucasians patients

A

\[p = 0.03 \]

\[VFD \]

\[\text{Variant IRAK-1 Haplotype} \]

\[\text{Wildtype IRAK-1 Haplotype} \]

\[OR: 2.6 \ (95\% \ CI, 1.1-7.7) \]

B

\[p = 0.02 \]

\[VFD \]

\[\text{Variant IRAK-1 Haplotype} \]

\[\text{Wildtype IRAK-1 Haplotype} \]

\[OR: 2.9 \ (95\% \ CI, 1.06-7.7) \]

Arcoli J. Am J Respir Crit Care Med 2006;175:133
IRAK-1 Haplotype Increases Mortality of Sepsis

Arcoli J. Am J Respir Crit Care Med 2006;175:133
Cytokine Polymorphisms
Association of TNF2 with TNF levels in Septic Shock

![Graph showing the association of TNF2 with TNF levels in Septic Shock](image)

Appoloni O. Am J Med 2001; 110:486
TNF2 polymorphism and septic shock outcome

JAMA 1999;282:561-8
TNF Locus Polymorphisms and SDRA Mortality

TNFA adjusted OR: 3.5; 95% CI: 1.4-8.6; p=0.007

<67 years adjusted OR: 14.9; 95% CI: 3.0-74; p<0.001

>67 years p=0.3

Gong MN Eur Respir J 2005;26:
TNF-308 Polymorphism and ICU Patients

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>YEAR</th>
<th>POPULATIONS</th>
<th>NUMBER OF PATIENTS</th>
<th>SEPTIC SHOCK</th>
<th>MORTALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watanabe</td>
<td>2005</td>
<td>SIRS + SOFA>5</td>
<td>113</td>
<td>41</td>
<td>+</td>
</tr>
<tr>
<td>Watanabe</td>
<td>2005</td>
<td>ICU PATIENTS</td>
<td>150</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Nakada</td>
<td>2005</td>
<td>ICU PATIENTS</td>
<td>197</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Gong</td>
<td>2005</td>
<td>ARDS</td>
<td>212</td>
<td>115</td>
<td>+</td>
</tr>
<tr>
<td>Gordon</td>
<td>2004</td>
<td>SS OR S SHOCK</td>
<td>213</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Barber</td>
<td>2004</td>
<td>BURN PTS</td>
<td>159</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Hedberg</td>
<td>2004</td>
<td>VLBW INFANTS</td>
<td>163</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Jaber</td>
<td>2004</td>
<td>ARF ICU PTS</td>
<td>67</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Calvano</td>
<td>2004</td>
<td>SIRS</td>
<td>44</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Zhang</td>
<td>2003</td>
<td>PANCREATITIS</td>
<td>208</td>
<td>32</td>
<td>+</td>
</tr>
<tr>
<td>Gallagher</td>
<td>2003</td>
<td>CAP PTS</td>
<td>93</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Balding</td>
<td>2003</td>
<td>MENINGO D.</td>
<td>183</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>O'keefe</td>
<td>2002</td>
<td>TRAUMA</td>
<td>152</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Reid</td>
<td>2002</td>
<td>MOF</td>
<td>88</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Waterer</td>
<td>2001</td>
<td>CAP</td>
<td>280</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>Appoloni</td>
<td>2001</td>
<td>SEPTIC SHOCK</td>
<td>37</td>
<td>31</td>
<td>+</td>
</tr>
<tr>
<td>Tang</td>
<td>2000</td>
<td>ICU PTS</td>
<td>112</td>
<td>42</td>
<td>+</td>
</tr>
<tr>
<td>Mira</td>
<td>1999</td>
<td>SEPTIC SHOCK</td>
<td>89</td>
<td>89</td>
<td>+</td>
</tr>
<tr>
<td>Nadel</td>
<td>1996</td>
<td>MENINGO D.</td>
<td>93</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Stuber</td>
<td>1995</td>
<td>SS OR S SHOCK</td>
<td>80</td>
<td>NA</td>
<td>-</td>
</tr>
</tbody>
</table>
The TNF-308 G→A Promoter Polymorphism
- Genetic Determinant of Sepsis Outcome?

- 591 adult caucasians with septic shock
- 584 age- & sex-matched control patients
 - ICU patients
 - No sepsis
 - No vasopressors / inotropes
 - No comorbidities

- Phenotyping
 - Septic shock
 - Comorbidities
 - Heart failure (NYHA class III/IV) n=113
 - Liver cirrhosis n=63
 - Cancer n=119
 - Treatment with immunosuppressive agents n=104

- Genotyping
TNF2 & Mortality of Septic Shock

<table>
<thead>
<tr>
<th></th>
<th>TNF1</th>
<th>TNF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>61±16</td>
<td>59±15</td>
</tr>
<tr>
<td>Septic Shock (SS)</td>
<td>59±16</td>
<td>56±14</td>
</tr>
<tr>
<td>SS + Co</td>
<td>63±15</td>
<td>56±19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Age</th>
<th>SAPS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>61±16</td>
<td>53±18</td>
</tr>
<tr>
<td>Septic Shock (SS)</td>
<td>59±16</td>
<td>52±17</td>
</tr>
<tr>
<td>SS + Co</td>
<td>63±16</td>
<td>54±20</td>
</tr>
</tbody>
</table>

P <0.001

P =0.27

% Mortality

n: 440, 151, 212, 88, 228, 63
Genetics of Coagulation
4G/5G PAI-1 Polymorphism

Transcriptional activator

Regulatory region

Promoter

- 675

GGGGG

Transcriptional activator

GGGGG

Repressor protein

Low plasma PAI-1 concentration

Transcription

Exon1-9

PAI-1 gene

High plasma PAI-1 concentration
4G/5G promoter polymorphism in the PAI-1 gene and severe trauma patients

Menges, Lancet 2001;357:1096
4G/5G promoter polymorphism in the PAI-1 gene and severe trauma patients

Menges, Lancet 2001;357:1096

- % Sepsis
 - 4G/4G: 19
 - 4G/5G: 29
 - 5G/5G: 13

- % MOF
 - 4G/4G: 80
 - 4G/5G: 80
 - 5G/5G: 1

- % Fatal Outcome
 - 4G/4G: 60
 - 4G/5G: 30
 - 5G/5G: 10
4G/5G PAI-1 Polymorphism and Meningococcal Disease

% Predicted Mortality

<table>
<thead>
<tr>
<th></th>
<th>4G/4G</th>
<th>4G/5G</th>
<th>5G/5G</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>213</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

P = 0.02

% Observed Mortality

<table>
<thead>
<tr>
<th></th>
<th>4G/4G</th>
<th>4G/5G</th>
<th>5G/5G</th>
</tr>
</thead>
</table>

P = 0.005

% Vascular Complications

<table>
<thead>
<tr>
<th></th>
<th>4G/4G</th>
<th>4G/5G</th>
<th>5G/5G</th>
</tr>
</thead>
</table>

P = 0.03

Survivors

Haralambous E. Crit Care Med 2003;31:27
Conclusions & Perspectives - 2

- Identification of markers of susceptibility and severity
 - Evaluation of the individual risk
 - Prevention, immunization
 - Pharmacogenomics
 - Personalized physiopathology
Recurrent Purpura Fulminans

2002/01: 15 yo girl admitted in ICU
- Temperature 40°C; HR 125; BP 74/45; RR 38
- Meningitis with purpura fulminans
- MOF (Shock, ARDS, ARF, DIC, Lactic acidosis)
- Meningococcus type N in the skin biopsy
- Survival with multiple finger amputations and skin grafting
- 6 month hospitalization

2003/02:
- Temperature 39°C; HR 125; BP 83/48; RR: 33
- Meningitis with purpura fulminans
- Lumbar punction → meningococcus type Y
- Shock and DIC
- Survival (Xigris) with new skin grafting
- 3 month hospitalization

Bohé J. Clin Infect Dis 2005
Recurrent Purpura Fulminans

Genetic predisposition?
Innate immunity
Inflammation
Coagulation

Innate Immunity
- TLR4
- CD14
- FcγRIIa
- FcγRIII
- MBL
- Complement
- C7 deficiency

Inflammation
- TNFα
- LTα
- IL-1
- IL-6
- IL-10
- ACE

Coagulation
- Tissue Factor
- Prothrombin
- Factor V
- Factor VII
- Factor XIII
- PAI-1

Bohé J. Clin Infect Dis 2005
Conclusions & Perspectives

- Identification of markers of susceptibility and severity
 - Evaluation of the individual risk
 - Prevention, immunization
 - Pharmacogenomics
 - Personalized physiopathology

- Inclusion criteria in clinical trials
 - Interventional studies (i.e. anti-TNF)
 - Severity scores: SAPS IV, APACHE IV?
The « challenge »

From Genetics to Rationale Therapeutics
Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial

Elliot Israel, Vernon M Chinchilli, Jean G Ford, Homer A Boushey, Reuben Cherniack, Timothy J Craig, Aaron Deykin, Joanne K Fagan, John V Fahy,

Lancet 2004; 364: 1505 - 12

Interpretation Genotype at the 16th aminoacid residue of the β₂-adrenergic receptor affects the long-term response albuterol use. Bronchodilator treatments avoiding albuterol may be appropriate for patients with the Arg/Al genotype.
Protein C -1641A/G SNP and Severity of Severe Sepsis

402 White Severe Sepsis Patients

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>AA (n = 142)</th>
<th>AG (n = 195)</th>
<th>GG (n = 64)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age^6</td>
<td>44/55/68</td>
<td>47/63/72</td>
<td>45/60/70</td>
<td>.17</td>
</tr>
<tr>
<td>Male sex</td>
<td>61%</td>
<td>66%</td>
<td>66%</td>
<td>.62</td>
</tr>
<tr>
<td>APACHE II^6</td>
<td>17/24/29</td>
<td>18/23/31</td>
<td>18/24/30</td>
<td>.94</td>
</tr>
<tr>
<td>Medical/surgical (% surgical)</td>
<td>20%</td>
<td>24%</td>
<td>27%</td>
<td>.58</td>
</tr>
</tbody>
</table>

Survival (%)

- -1641 GG/GA (66%; N=260)
- -1641 AA (58%; N=142)

Walley KR. Crit Care Med 2006;35
PUTTING SCIENCE RIGHT TO WORK!

Social Security #

DNA

Retina Scan

Hologram

Hair Sample

Denial Records

ID Badge to Badger
Conclusions & Perspectives

- Identification of markers of susceptibility and severity
 - Evaluation of the individual risk
 - Prevention, immunization
 - Pharmacogenomics
 - Personalized physiopathology

- Inclusion criteria in clinical trials
 - Interventional studies (i.e. anti-TNF)
 - Classification of diseases, SAPS IV, APACHE IV

- LIMIT: Doctor’s education and training
Education and Training

Case-control studies in the genomic era: a clinician’s guide

Daniel G Healy

- Human genetic code
- Human genome project
- Candidate-gene and genome-wide approaches
- What is linkage disequilibrium?
- How to judge a case-control study?

Lancet Neurol 2006; 5:701-707
Current Genetic Association Studies in Sepsis

- Large cohorts
- Homogeneous populations (ethnies, age, gender, infections)
- Well-defined phenotypes:
 - severe sepsis ≠ septic shock, ALI ≠ ARDS, …
 - importance of comorbidities